"""
This modules contains basic types for binary circuits. The
fixed-length types obtained by :py:obj:`get_type(n)` are the preferred
way of using them, and in some cases required in connection with
container types.
Computation using these types will always be executed as a binary
circuit. See :ref:`protocol-pairs` for the exact protocols.
"""
from Compiler.types import MemValue, read_mem_value, regint, Array, cint
from Compiler.types import _bitint, _number, _fix, _structure, _bit, _vec, sint, sintbit
from Compiler.types import vectorized_classmethod
from Compiler.program import Tape, Program
from Compiler.exceptions import *
from Compiler import util, oram, floatingpoint, library, comparison
from Compiler import instructions_base
import Compiler.GC.instructions as inst
import operator
import math
import itertools
from functools import reduce
class _binary:
def reveal_to(self, *args, **kwargs):
raise CompilerError(
'%s does not support revealing to indivual players' % type(self))
class bits(Tape.Register, _structure, _bit):
n = 40
unit = 64
PreOp = staticmethod(floatingpoint.PreOpN)
decomposed = None
@staticmethod
def PreOR(l):
return [1 - x for x in \
floatingpoint.PreOpN(operator.mul, \
[1 - x for x in l])]
@classmethod
def get_type(cls, length):
""" Returns a fixed-length type. """
if length == 1:
return cls.bit_type
if length not in cls.types:
class bitsn(cls):
n = length
cls.types[length] = bitsn
bitsn.clear_type = cbits.get_type(length)
bitsn.__name__ = cls.__name__ + str(length)
return cls.types[length]
@classmethod
def conv(cls, other):
if isinstance(other, cls) and cls.n == other.n:
return other
elif isinstance(other, MemValue):
return cls.conv(other.read())
else:
res = cls()
res.load_other(other)
return res
hard_conv = conv
@classmethod
def compose(cls, items, bit_length=1):
return cls.bit_compose(sum([util.bit_decompose(item, bit_length) for item in items], []))
@classmethod
def bit_compose(cls, bits):
bits = list(bits)
if len(bits) == 1 and isinstance(bits[0], cls):
return cls(bits[0])
bits = list(bits)
for i in range(len(bits)):
if util.is_constant(bits[i]):
bits[i] = cls.bit_type(bits[i])
res = cls.new(n=len(bits))
if len(bits) <= cls.unit:
cls.bitcom(res, *(sbit.conv(bit) for bit in bits))
else:
n_bak = bits[0].n
bits[0].n = 1
res = cls.trans(bits)[0]
bits[0].n = n_bak
res.decomposed = bits
return res
def bit_decompose(self, bit_length=None):
n = bit_length or self.n
suffix = [0] * (n - self.n)
if n == 1 and self.n == 1:
return [self]
n = min(n, self.n)
if self.decomposed is None or len(self.decomposed) < n:
if n <= self.unit:
res = [self.bit_type() for i in range(n)]
self.bitdec(self, *res)
else:
res = self.bit_type.trans([self])
self.decomposed = res
return res + suffix
else:
return self.decomposed[:n] + suffix
@staticmethod
def bit_decompose_clear(a, n_bits):
res = [cbits.get_type(a.size)() for i in range(n_bits)]
cbits.conv_cint_vec(a, *res)
return res
@classmethod
def malloc(cls, size, creator_tape=None, **kwargs):
return Program.prog.malloc(size, cls, creator_tape=creator_tape,
**kwargs)
@staticmethod
def n_elements():
return 1
@classmethod
def mem_size(cls):
return math.ceil(cls.n / cls.unit)
@classmethod
def load_mem(cls, address, mem_type=None, size=None):
if size not in (None, 1):
v = [cls.load_mem(address + i) for i in range(size)]
return cls.vec(v)
res = cls()
if mem_type == 'sd':
return cls.load_dynamic_mem(address)
else:
cls.mem_op(cls.load_inst, res, address)
return res
def store_in_mem(self, address):
self.mem_op(self.store_inst, self, address)
@staticmethod
def mem_op(inst, reg, address):
direct = isinstance(address, int)
if not direct:
address = regint.conv(address)
inst[direct](reg, address)
@classmethod
def new(cls, value=None, n=None):
if util.is_constant(value):
n = value.bit_length()
return cls.get_type(n)(value)
def __init__(self, value=None, n=None, size=None):
assert n == self.n or n is None
if size != 1 and size is not None:
raise Exception('invalid size for bit type: %s' % size)
self.n = n or self.n
size = math.ceil(self.n / self.unit) if self.n != None else None
Tape.Register.__init__(self, self.reg_type, Program.prog.curr_tape,
size=size)
if value is not None:
self.load_other(value)
def copy(self):
return type(self).new(n=instructions_base.get_global_vector_size())
def set_length(self, n):
if n > self.n:
raise Exception('too long: %d/%d' % (n, self.n))
self.n = n
def set_size(self, size):
pass
def load_int(self, value):
n_limbs = math.ceil(self.n / self.unit)
for i in range(n_limbs):
self.conv_regint(min(self.unit, self.n - i * self.unit),
self[i], regint(value % 2 ** self.unit))
value >>= self.unit
def load_other(self, other):
if isinstance(other, cint):
assert(self.n == other.size)
self.conv_regint_by_bit(self.n, self, other.to_regint(1))
elif isinstance(other, int):
self.set_length(self.n or util.int_len(other))
self.load_int(other)
elif isinstance(other, regint):
assert self.unit == 64
n_units = int(math.ceil(self.n / self.unit))
n_convs = min(other.size, n_units)
for i in range(n_convs):
x = self[i]
y = other[i]
self.conv_regint(min(self.unit, self.n - i * self.unit), x, y)
for i in range(n_convs, n_units):
inst.ldbits(self[i], min(self.unit, self.n - i * self.unit), 0)
elif (isinstance(self, type(other)) or isinstance(other, type(self))) \
and self.n == other.n:
try:
self.mov(self, other)
except AssertionError:
for i in range(math.ceil(self.n / self.unit)):
self.mov(self[i], other[i])
elif isinstance(other, sintbit) and isinstance(self, sbits):
assert len(other) == 1
r = sint.get_dabit()
self.mov(self, r[1] ^ other.bit_xor(r[0]).reveal())
elif isinstance(other, sint) and isinstance(self, sbits):
self.mov(self, sbitvec(other, self.n).elements()[0])
else:
try:
bits = other.bit_decompose()
bits = bits[:self.n] + [self.bit_type(0)] * (self.n - len(bits))
other = self.bit_compose(bits)
assert(isinstance(other, type(self)))
assert(other.n == self.n)
self.load_other(other)
except:
raise CompilerError('cannot convert %s/%s from %s to %s' % \
(str(other), repr(other), type(other), type(self)))
def long_one(self):
return 2**self.n - 1 if self.n != None else None
def is_long_one(self, other):
return util.is_all_ones(other, self.n) or \
(other is None and self.n == None)
def res_type(self, other):
if self.n == None and other.n == None:
n = None
else:
n = max(self.n, other.n)
return self.get_type(n)
@read_mem_value
def __and__(self, other):
if util.is_zero(other):
return 0
elif self.is_long_one(other):
return self
elif isinstance(other, _vec):
return other & other.from_vec([self])
else:
return self._and(other)
@read_mem_value
def __xor__(self, other):
if util.is_zero(other):
return self
elif self.is_long_one(other):
return ~self
else:
return self._xor(other)
__rand__ = __and__
__rxor__ = __xor__
def __repr__(self):
if self.n != None:
suffix = '%d' % self.n
if type(self).n != None and type(self).n != self.n:
suffix += '/%d' % type(self).n
else:
suffix = 'undef'
return '%s(%s)' % (super(bits, self).__repr__(), suffix)
__str__ = __repr__
def _new_by_number(self, i, size=1):
assert(size == 1)
n = min(self.unit, self.n - (i - self.i) * self.unit)
res = self.get_type(n)()
res.i = i
res.program = self.program
return res
def if_else(self, x, y):
"""
Bit-wise oblivious selection::
sb32 = sbits.get_type(32)
print_ln('%s', sb32(3).if_else(sb32(5), sb32(2)).reveal())
This will output 1 because it selects the two least
significant bits from 5 and the rest of the bits from 2.
"""
return result_conv(x, y)(self & (x ^ y) ^ y)
def zero_if_not(self, condition):
if util.is_constant(condition):
return self * condition
else:
return self * cbit.conv(condition)
def expand(self, length):
if self.n in (length, None):
return self
elif self.n == 1:
return self.get_type(length).bit_compose([self] * length)
else:
raise CompilerError('cannot expand from %s to %s' % (self.n, length))
@classmethod
def new_vector(cls, size):
return cls.get_type(size)()
@classmethod
def concat(cls, parts):
return cls.bit_compose(
sum([part.bit_decompose() for part in parts], []))
def copy_from_part(self, source, base, size):
self.mov(self,
self.bit_compose(source.bit_decompose()[base:base + size]))
def vector_size(self):
return self.n
@staticmethod
def size_for_mem():
return 1
[docs]class cbits(bits):
""" Clear bits register. Helper type with limited functionality. """
max_length = 64
reg_type = 'cb'
is_clear = True
load_inst = (inst.ldmcbi, inst.ldmcb)
store_inst = (inst.stmcbi, inst.stmcb)
bitdec = inst.bitdecc
conv_regint = staticmethod(lambda n, x, y: inst.convcint(x, y))
conv_cint_vec = inst.convcintvec
mov = staticmethod(lambda x, y: inst.addcbi(x, y, 0))
@classmethod
def bit_compose(cls, bits):
return sum(bit << i for i, bit in enumerate(bits))
@classmethod
def conv_regint_by_bit(cls, n, res, other):
assert n == res.n
assert n == other.size
cls.conv_cint_vec(cint(other, size=other.size), res)
@classmethod
def conv(cls, other):
if isinstance(other, cbits) and cls.n != None and \
cls.n // cls.unit == other.n // cls.unit:
if isinstance(other, cls):
return other
else:
res = cls()
for i in range(math.ceil(cls.n / cls.unit)):
cls.mov(res[i], other[i])
return res
else:
return super(cbits, cls).conv(other)
types = {}
def store_in_dynamic_mem(self, address):
inst.stmsdci(self, cbits.conv(address))
def clear_op(self, other, c_inst, ci_inst, op):
if isinstance(other, cbits):
res = cbits.get_type(max(self.n, other.n))()
c_inst(res, self, other)
return res
elif isinstance(other, sbits):
return NotImplemented
else:
if util.is_constant(other):
if other >= 2**31 or other < -2**31:
return op(self, cbits.new(other))
res = cbits.get_type(max(self.n, len(bin(other)) - 2))()
ci_inst(res, self, other)
return res
else:
return op(self, cbits(other))
__add__ = lambda self, other: \
self.clear_op(other, inst.addcb, inst.addcbi, operator.add)
def __sub__(self, other):
try:
return self + -other
except:
return type(self)(regint(self) - regint(other))
def __rsub__(self, other):
return type(self)(other - regint(self))
def __neg__(self):
return type(self)(-regint(self))
def _xor(self, other):
if isinstance(other, (sbits, sbitvec)):
return NotImplemented
elif isinstance(other, cbits):
res = self.res_type(other)()
assert res.size == self.size
assert res.size == other.size
inst.xorcb(res.n, res, self, other)
return res
else:
return self.clear_op(other, None, inst.xorcbi, operator.xor)
def _and(self, other):
try:
return cbits.get_type(self.n)(regint(self) & regint(other))
except CompilerError:
return NotImplemented
__radd__ = __add__
def __mul__(self, other):
if isinstance(other, cbits):
return cbits.get_type(self.n)(regint(self) * regint(other))
else:
try:
res = cbits.get_type(min(self.max_length,
self.n+util.int_len(other)))()
inst.mulcbi(res, self, other)
return res
except TypeError:
return NotImplemented
def __rshift__(self, other):
res = cbits.new(n=self.n-other)
inst.shrcbi(res, self, other)
return res
def __lshift__(self, other):
res = cbits.get_type(self.n+other)()
inst.shlcbi(res, self, other)
return res
def __invert__(self):
res = type(self)()
inst.notcb(self.n, res, self)
return res
__lt__ = lambda self, other: regint(self) < other
__le__ = lambda self, other: regint(self) <= other
__gt__ = lambda self, other: regint(self) > other
__ge__ = lambda self, other: regint(self) >= other
__eq__ = lambda self, other: regint(self) == other
__ne__ = lambda self, other: regint(self) != other
def print_reg(self, desc=''):
inst.print_regb(self, desc)
def print_reg_plain(self):
inst.print_reg_signed(self.n, self)
output = print_reg_plain
def print_if(self, string):
inst.cond_print_strb(self, string)
def output_if(self, cond):
if Program.prog.options.binary:
@library.if_(cond)
def _():
self.print_reg_plain()
else:
cint(self).output_if(cond)
def reveal(self):
return self
def to_regint(self, dest=None):
if dest is None:
dest = regint()
if self.n > 64:
raise CompilerError('too many bits')
inst.convcbit(dest, self)
return dest
def to_regint_by_bit(self):
if self.n != None:
res = regint(size=self.n)
else:
res = regint()
inst.convcbitvec(self.n, res, self)
return res
[docs]class sbits(bits):
"""
Secret bits register. This type supports basic bit-wise operations::
sb32 = sbits.get_type(32)
a = sb32(3)
b = sb32(5)
print_ln('XOR: %s', (a ^ b).reveal())
print_ln('AND: %s', (a & b).reveal())
print_ln('NOT: %s', (~a).reveal())
This will output the following::
XOR: 6
AND: 1
NOT: -4
Instances can be also be initalized from :py:obj:`~Compiler.types.regint`
and :py:obj:`~Compiler.types.sint`.
"""
max_length = 64
reg_type = 'sb'
is_clear = False
clear_type = cbits
load_inst = (inst.ldmsbi, inst.ldmsb)
store_inst = (inst.stmsbi, inst.stmsb)
bitdec = inst.bitdecs
bitcom = inst.bitcoms
conv_regint = inst.convsint
@classmethod
def conv_regint_by_bit(cls, n, res, other):
tmp = cbits.get_type(n)()
tmp.conv_regint_by_bit(n, tmp, other)
res.load_other(tmp)
mov = staticmethod(lambda x, y: inst.movsb(x.n, x, y))
types = {}
def __init__(self, *args, **kwargs):
bits.__init__(self, *args, **kwargs)
@staticmethod
def new(value=None, n=None):
if n == 1:
return sbit(value)
else:
return sbits.get_type(n)(value)
@staticmethod
def _new(value):
return value
@staticmethod
def get_random_bit():
res = sbit()
inst.bitb(res)
return res
@staticmethod
def _check_input_player(player):
if not util.is_constant(player):
raise CompilerError('player must be known at compile time '
'for binary circuit inputs')
# compatiblity to sint
get_raw_input_from = get_input_from
@classmethod
def load_dynamic_mem(cls, address):
res = cls()
if isinstance(address, int):
inst.ldmsd(res, address, cls.n)
else:
inst.ldmsdi(res, address, cls.n)
return res
def store_in_dynamic_mem(self, address):
if isinstance(address, int):
inst.stmsd(self, address)
else:
inst.stmsdi(self, cbits.conv(address))
def load_int(self, value):
if (abs(value) > (1 << self.n)):
raise Exception('public value %d longer than %d bits' \
% (value, self.n))
if self.n <= 32:
inst.ldbits(self, self.n, value)
else:
bits.load_int(self, value)
def load_other(self, other):
if isinstance(other, cbits) and self.n == other.n:
inst.convcbit2s(self.n, self, other)
else:
super(sbits, self).load_other(other)
@read_mem_value
def __add__(self, other):
if isinstance(other, int) or other is None:
return self.xor_int(other)
else:
if not isinstance(other, sbits):
other = self.conv(other)
if self.n is None or other.n is None:
assert self.n == other.n
n = None
else:
n = min(self.n, other.n)
res = self.new(n=n)
inst.xors(n, res, self, other)
if self.n != None and max(self.n, other.n) > n:
if self.n > n:
longer = self
else:
longer = other
bits = res.bit_decompose() + longer.bit_decompose()[n:]
res = self.bit_compose(bits)
return res
__radd__ = __add__
__sub__ = __add__
__rsub__ = __add__
_xor = __add__
@read_mem_value
def __mul__(self, other):
if isinstance(other, int):
return self.mul_int(other)
elif isinstance(other, cint):
try:
other = cbits.get_type(self.unit)(regint(other))
except CompilerError:
return NotImplemented
if self.n == 1:
return self.bit_compose([self] * self.unit) & other
try:
if (self.n, other.n) == (1, 1):
return self & other
if min(self.n, other.n) != 1:
raise NotImplementedError('high order multiplication')
n = max(self.n, other.n)
res = self.new(n=max(self.n, other.n))
order = (self, other) if self.n != 1 else (other, self)
inst.andrs(n, res, *order)
return res
except AttributeError:
return NotImplemented
__rmul__ = __mul__
def _and(self, other):
res = self.new(n=self.n)
if not isinstance(other, sbits):
other = cbits.get_type(self.n).conv(other)
inst.andm(self.n, res, self, other)
return res
other = self.conv(other)
assert(self.n == other.n)
inst.ands(self.n, res, self, other)
return res
def xor_int(self, other):
if other == 0:
return self
elif other == self.long_one():
return ~self
self_bits = self.bit_decompose()
other_bits = util.bit_decompose(other, max(self.n, util.int_len(other)))
extra_bits = [self.new(b, n=1) for b in other_bits[self.n:]]
return self.bit_compose([~x if y else x \
for x,y in zip(self_bits, other_bits)] \
+ extra_bits)
def mul_int(self, other):
assert(util.is_constant(other))
if other == 0:
return 0
elif other == 1:
return self
elif self.n == 1:
bits = util.bit_decompose(other, util.int_len(other))
zero = sbit(0)
mul_bits = [self if b else zero for b in bits]
return self.bit_compose(mul_bits)
else:
print(self.n, other)
return NotImplemented
def __lshift__(self, i):
return self.bit_compose([sbit(0)] * i + self.bit_decompose()[:self.max_length-i])
def __invert__(self):
res = type(self)(n=self.n)
inst.nots(self.n, res, self)
return res
def __neg__(self):
return self
def reveal(self, check=False):
assert not check
if self.n == None or \
self.n > max(self.max_length, self.clear_type.max_length):
assert(self.unit == self.clear_type.unit)
res = self.clear_type.get_type(self.n)()
inst.reveal(self.n, res, self)
return res
def equal(self, other, n=None):
bits = (~(self + other)).bit_decompose()
return reduce(operator.mul, bits)
def right_shift(self, m, k, security=None, signed=True):
return self.TruncPr(k, m)
def TruncPr(self, k, m, kappa=None):
if k > self.n:
raise Exception('TruncPr overflow: %d > %d' % (k, self.n))
bits = self.bit_decompose()
res = self.get_type(k - m).bit_compose(bits[m:k])
return res
@classmethod
def two_power(cls, n):
if n > cls.n:
raise Exception('two_power overflow: %d > %d' % (n, cls.n))
res = cls()
if n == cls.n:
res.load_int(-1 << (n - 1))
else:
res.load_int(1 << n)
return res
[docs] def popcnt(self):
""" Population count / Hamming weight.
:return: :py:obj:`sbits` of required length """
return sbitvec([self]).popcnt().elements()[0]
@classmethod
def trans(cls, rows):
rows = list(rows)
if len(rows) == 1 and rows[0].n <= rows[0].unit:
return rows[0].bit_decompose()
for row in rows:
try:
n_columns = row.n
break
except:
pass
for i in range(len(rows)):
if util.is_zero(rows[i]):
rows[i] = cls.get_type(n_columns)(0)
for row in rows:
assert(row.n == n_columns)
if n_columns == 1 and len(rows) <= cls.unit:
return [cls.bit_compose(rows)]
else:
res = [cls.new(n=len(rows)) for i in range(n_columns)]
inst.trans(len(res), *(res + rows))
return res
[docs] @staticmethod
def bit_adder(*args, **kwargs):
""" Binary adder in binary circuits.
:param a: summand (list of 0/1 in compatible type)
:param b: summand (list of 0/1 in compatible type)
:param carry_in: input carry (default 0)
:param get_carry: add final carry to output
:returns: list of 0/1 in relevant type
"""
return sbitint.bit_adder(*args, **kwargs)
@staticmethod
def ripple_carry_adder(*args, **kwargs):
return sbitint.ripple_carry_adder(*args, **kwargs)
[docs]class sbitvec(_vec, _bit, _binary):
""" Vector of registers of secret bits, effectively a matrix of secret bits.
This facilitates parallel arithmetic operations in binary circuits.
Container types are not supported, use :py:obj:`sbitvec.get_type` for that.
You can access the rows by member :py:obj:`v` and the columns by calling
:py:obj:`elements`.
There are four ways to create an instance:
1. By transposition::
sb32 = sbits.get_type(32)
x = sbitvec([sb32(5), sb32(3), sb32(0)])
print_ln('%s', [x.v[0].reveal(), x.v[1].reveal(), x.v[2].reveal()])
print_ln('%s', [x.elements()[0].reveal(), x.elements()[1].reveal()])
This should output::
[3, 2, 1]
[5, 3]
2. Without transposition::
sb32 = sbits.get_type(32)
x = sbitvec.from_vec([sb32(5), sb32(3)])
print_ln('%s', [x.v[0].reveal(), x.v[1].reveal()])
This should output::
[5, 3]
3. From :py:obj:`~Compiler.types.sint`::
y = sint(5)
x = sbitvec(y, 3, 3)
print_ln('%s', [x.v[0].reveal(), x.v[1].reveal(), x.v[2].reveal()])
This should output::
[1, 0, 1]
4. Private input::
x = sbitvec.get_type(32).get_input_from(player)
"""
bit_extend = staticmethod(lambda v, n: v[:n] + [0] * (n - len(v)))
is_clear = False
[docs] @classmethod
def get_type(cls, n):
""" Create type for fixed-length vector of registers of secret bits.
As with :py:obj:`sbitvec`, you can access the rows by member
:py:obj:`v` and the columns by calling :py:obj:`elements`.
"""
class sbitvecn(cls, _structure):
n_bits = n
@staticmethod
def get_type(n):
return cls.get_type(n)
@classmethod
def malloc(cls, size, creator_tape=None):
return sbit.malloc(
size * cls.mem_size(), creator_tape=creator_tape)
@staticmethod
def n_elements():
return 1
@staticmethod
def mem_size():
return sbits.get_type(n).mem_size()
@classmethod
def get_input_from(cls, player, size=1, f=0):
""" Secret input from :py:obj:`player`. The input is decomposed
into bits.
:param: player (int)
"""
sbits._check_input_player(player)
instructions_base.check_vector_size(size)
if size == 1:
res = cls.from_vec(sbit() for i in range(n))
inst.inputbvec(n + 3, f, player, *res.v)
return res
else:
elements = []
for i in range(size):
v = sbits.get_type(n)()
inst.inputb(player, n, f, v)
elements.append(v)
return cls(elements)
get_raw_input_from = get_input_from
@classmethod
def from_vec(cls, vector):
res = cls()
res.v = _complement_two_extend(list(vector), n)[:n]
return res
def __init__(self, other=None, size=None):
instructions_base.check_vector_size(size)
if other is not None:
if util.is_constant(other):
t = sbits.get_type(size or 1)
self.v = [t(((other >> i) & 1) * ((1 << t.n) - 1))
for i in range(n)]
elif isinstance(other, _vec):
self.v = [type(x)(x) for x in self.bit_extend(other.v, n)]
elif isinstance(other, (list, tuple)):
self.v = self.bit_extend(sbitvec(other).v, n)
else:
self.v = sbits.get_type(n)(other).bit_decompose()
assert len(self.v) == n
assert size is None or size == self.v[0].n
@classmethod
def load_mem(cls, address, size=None):
if isinstance(address, int) or len(address) == 1:
address = [address + i * cls.mem_size()
for i in range(size or 1)]
else:
assert size == None
return cls(
[sbits.get_type(n).load_mem(x) for x in address])
def store_in_mem(self, address):
size = 1
for x in self.v:
if not util.is_constant(x):
size = max(size, x.n)
if isinstance(address, int) or len(address) == 1:
address = [address + i * self.mem_size()
for i in range(size)]
else:
assert size == len(address)
for x, dest in zip(self.elements(), address):
x.store_in_mem(dest)
@classmethod
def two_power(cls, nn, size=1):
return cls.from_vec(
[0] * nn + [sbits.get_type(size)().long_one()] + [0] * (n - nn - 1))
def coerce(self, other):
if util.is_constant(other):
return self.from_vec(util.bit_decompose(other, n))
else:
return super(sbitvecn, self).coerce(other)
@classmethod
def bit_compose(cls, bits):
bits = list(bits)
if len(bits) < n:
bits += [0] * (n - len(bits))
assert len(bits) == n
return cls.from_vec(bits)
def zero_if_not(self, condition):
return self.from_vec(x.zero_if_not(condition) for x in self.v)
def __str__(self):
return 'sbitvec(%d)' % n
sbitvecn.basic_type = sbitvecn
sbitvecn.reg_type = 'sb'
return sbitvecn
@classmethod
def from_vec(cls, vector):
res = cls()
res.v = list(vector)
return res
compose = from_vec
@classmethod
def combine(cls, vectors):
res = cls()
res.v = sum((vec.v for vec in vectors), [])
return res
@classmethod
def from_matrix(cls, matrix):
# any number of rows, limited number of columns
return cls.combine(cls(row) for row in matrix)
[docs] @classmethod
def from_hex(cls, string):
""" Create from hexadecimal string (little-endian). """
assert len(string) % 2 == 0
v = []
for i in range(0, len(string), 2):
v += [sbit(int(x))
for x in reversed(bin(int(string[i:i + 2], 16))[2:].zfill(8))]
return cls.from_vec(v)
def __init__(self, elements=None, length=None, input_length=None):
if length:
assert isinstance(elements, sint)
if Program.prog.use_split():
x = elements.split_to_two_summands(length)
v = sbitint.bit_adder(x[0], x[1])
else:
prog = Program.prog
if not prog.options.ring:
# force the use of edaBits
backup = prog.use_edabit()
prog.use_edabit(True)
self.v = prog.non_linear.bit_dec(
elements, max(length, input_length or prog.bit_length),
length, maybe_mixed=True)
assert isinstance(self.v[0], sbits)
prog.use_edabit(backup)
return
comparison.require_ring_size(length, 'A2B conversion')
l = int(Program.prog.options.ring)
r, r_bits = sint.get_edabit(length, size=elements.size)
c = ((elements - r) << (l - length)).reveal()
c >>= l - length
cb = [(c >> i) for i in range(length)]
x = sbitintvec.from_vec(r_bits) + sbitintvec.from_vec(cb)
v = x.v
self.v = v[:length]
elif isinstance(elements, sbitvec):
self.v = elements.v
elif elements is not None and not (util.is_constant(elements) and \
elements == 0):
self.v = sbits.trans(elements)
[docs] def popcnt(self):
""" Population count / Hamming weight.
:return: :py:obj:`sbitintvec` of required length """
res = sbitint.wallace_tree([[b] for b in self.v])
while util.is_zero(res[-1]):
del res[-1]
return sbitintvec.get_type(len(res)).from_vec(res)
def elements(self, start=None, stop=None):
if stop is None:
start, stop = stop, start
return sbits.trans(self.v[start:stop])
def coerce(self, other):
if isinstance(other, cint):
size = other.size
return (other.get_vector(base, min(64, size - base)) \
for base in range(0, size, 64))
if not isinstance(other, type(self)):
return type(self)(other)
return other
def __xor__(self, other):
other = self.coerce(other)
return self.from_vec(x ^ y for x, y in zip(*self.expand(other)))
def __and__(self, other):
return self.from_vec(x & y for x, y in zip(*self.expand(other)))
__rxor__ = __xor__
__rand__ = __and__
def __invert__(self):
return self.from_vec(~x for x in self.v)
def if_else(self, x, y):
return util.if_else(self.v[0], x, y)
def __iter__(self):
return iter(self.v)
def __len__(self):
return len(self.v)
def __getitem__(self, index):
return self.v[index]
@classmethod
def conv(cls, other):
if isinstance(other, cls):
return cls.from_vec(other.v)
else:
return cls(other)
hard_conv = conv
@property
def size(self):
if not self.v or util.is_constant(self.v[0]):
return 1
else:
return self.v[0].n
@property
def n_bits(self):
return len(self.v)
def store_in_mem(self, address):
for i, x in enumerate(self.elements()):
x.store_in_mem(address + i)
def bit_decompose(self, n_bits=None, security=None, maybe_mixed=None):
return self.v[:n_bits]
bit_compose = from_vec
def reveal(self):
return util.untuplify([x.reveal() for x in self.elements()])
def long_one(self):
return [x.long_one() for x in self.v]
def __rsub__(self, other):
return self.from_vec(y - x for x, y in zip(self.v, other))
[docs] def half_adder(self, other):
other = self.coerce(other)
res = zip(*(x.half_adder(y) for x, y in zip(self.v, other)))
return (self.from_vec(x) for x in res)
def __mul__(self, other):
if isinstance(other, int):
return self.from_vec(x * other for x in self.v)
if isinstance(other, sbitvec):
if len(other.v) == 1:
other = other.v[0]
elif len(self.v) == 1:
self, other = other, self.v[0]
else:
raise CompilerError('no operand of lenght 1: %d/%d',
(len(self.v), len(other.v)))
if not isinstance(other, sbits):
return NotImplemented
ops = []
for x in self.v:
if not util.is_zero(x):
assert x.n == other.n
ops.append(x)
if ops:
prods = [sbits.get_type(other.n)() for i in ops]
inst.andrsvec(3 + 2 * len(ops), other.n, *prods, other, *ops)
res = []
i = 0
for x in self.v:
if util.is_zero(x):
res.append(0)
else:
res.append(prods[i])
i += 1
return sbitvec.from_vec(res)
__rmul__ = __mul__
def __add__(self, other):
return self.from_vec(x + y for x, y in zip(self.v, other))
[docs] def bit_and(self, other):
return self & other
[docs] def bit_xor(self, other):
return self ^ other
def right_shift(self, m, k, security=None, signed=True):
return self.from_vec(self.v[m:])
def tree_reduce(self, function):
elements = self.elements()
while len(elements) > 1:
size = len(elements)
half = size // 2
left = elements[:half]
right = elements[half:2*half]
odd = elements[2*half:]
sides = [self.from_vec(sbitvec(x).v) for x in (left, right)]
red = function(*sides)
elements = red.elements()
elements += odd
return self.from_vec(sbitvec(elements).v)
@classmethod
def comp_result(cls, x):
return cls.get_type(1).from_vec([x])
def expand(self, other, expand=True):
m = 1
for x in itertools.chain(self.v, other.v if isinstance(other, sbitvec) else []):
try:
m = max(m, x.n)
except:
pass
res = []
if not util.is_constant(other):
other = self.coerce(other)
for y in self, other:
if isinstance(y, int):
res.append([x * sbits.get_type(m)().long_one()
for x in util.bit_decompose(y, len(self.v))])
else:
v = [type(x)(x) if isinstance(x, bits) else x for x in y.v]
res.append([x.expand(m) if (expand and isinstance(x, bits))
else x for x in v])
return res
def demux(self):
if len(self) == 1:
return sbitvec.from_vec([self.v[0].bit_not(), self.v[0]])
a = sbitvec.from_vec(self.v[:len(self) // 2]).demux()
b = sbitvec.from_vec(self.v[len(self) // 2:]).demux()
prod = [a * bb for bb in b.v]
return sbitvec.from_vec(reduce(operator.add, (x.v for x in prod)))
def reverse_bytes(self):
if len(self.v) % 8 != 0:
raise CompilerError('bit length not divisible by eight')
return self.from_vec(sum(reversed(
[self.v[i:i + 8] for i in range(0, len(self.v), 8)]), []))
[docs] def reveal_print_hex(self):
""" Reveal and print in hexademical (one line per element). """
if len(self.v) % 64 != 0:
raise CompilerError('only works for lengths divisible by 64')
for x in self.reverse_bytes().elements():
x.reveal().print_reg()
def update(self, other):
other = self.conv(other)
assert len(self.v) == len(other.v)
for x, y in zip(self.v, other.v):
x.update(y)
class bit(object):
n = 1
def result_conv(x, y):
try:
def f(res):
try:
return t.conv(res)
except:
return res
if util.is_constant(x):
if util.is_constant(y):
return lambda x: x
else:
t = type(y)
return f
if util.is_constant(y):
t = type(x)
return f
if type(x) is type(y):
t = type(x)
return f
except AttributeError:
pass
return lambda x: x
[docs]class sbit(bit, sbits):
""" Single secret bit. """
[docs] @classmethod
def get_type(cls, length):
return sbits.get_type(length)
[docs] def if_else(self, x, y):
""" Non-vectorized oblivious selection::
sb32 = sbits.get_type(32)
print_ln('%s', sbit(1).if_else(sb32(5), sb32(2)).reveal())
This will output 5.
"""
assert self.n == 1
diff = x ^ y
if isinstance(diff, cbits):
return result_conv(x, y)(self & (diff) ^ y)
else:
return result_conv(x, y)(self * (diff) ^ y)
class cbit(bit, cbits):
pass
sbits.bit_type = sbit
cbits.bit_type = cbit
sbit.clear_type = cbit
sbits.default_type = sbits
class bitsBlock(oram.Block):
def __init__(self, value, start, lengths, entries_per_block):
self.value_type = type(value)
oram.Block.__init__(self, value, lengths)
length = sum(self.lengths)
used_bits = entries_per_block * length
self.value_bits = self.value.bit_decompose(used_bits)
start_length = util.log2(entries_per_block)
self.start_bits = util.bit_decompose(start, start_length)
self.start_demux = oram.demux_list(self.start_bits)
self.entries = [sbits.bit_compose(self.value_bits[i*length:][:length]) \
for i in range(entries_per_block)]
self.mul_entries = list(map(operator.mul, self.start_demux, self.entries))
self.bits = sum(self.mul_entries).bit_decompose()
self.mul_value = sbits.compose(self.mul_entries, sum(self.lengths))
self.anti_value = self.mul_value + self.value
def set_slice(self, value):
value = sbits.compose(util.tuplify(value), sum(self.lengths))
for i,b in enumerate(self.start_bits):
value = b.if_else(value << (2**i * sum(self.lengths)), value)
self.value = value + self.anti_value
return self
oram.block_types[sbits] = bitsBlock
class dyn_sbits(sbits):
pass
class DynamicArray(Array):
def __init__(self, *args):
Array.__init__(self, *args)
def _malloc(self):
return Program.prog.malloc(self.length, 'sd', self.value_type)
def _load(self, address):
return self.value_type.load_dynamic_mem(cbits.conv(address))
def _store(self, value, address):
if isinstance(value, MemValue):
value = value.read()
if isinstance(value, sbits):
self.value_type.conv(value).store_in_dynamic_mem(address)
else:
cbits.conv(value).store_in_dynamic_mem(address)
sbits.dynamic_array = Array
cbits.dynamic_array = Array
def _complement_two_extend(bits, k):
if len(bits) == 1:
return bits + [0] * (k - len(bits))
else:
return bits[:k] + [bits[-1]] * (k - len(bits))
class _sbitintbase:
def extend(self, n):
bits = self.bit_decompose()
bits += [bits[-1]] * (n - len(bits))
return self.get_type(n).bit_compose(bits)
def cast(self, n):
bits = self.bit_decompose()[:n]
bits += [bits[-1]] * (n - len(bits))
return self.get_type(n).bit_compose(bits)
def round(self, k, m, kappa=None, nearest=None, signed=None):
bits = self.bit_decompose()
if signed:
bits += [bits[-1]] * (k - len(bits))
res_bits = self.bit_adder(bits[m:k], [bits[m-1]])
return self.get_type(k - m).compose(res_bits)
def int_div(self, other, bit_length=None):
k = bit_length or max(self.n, other.n)
return (library.IntDiv(self.cast(k), other.cast(k), k) >> k).cast(k)
def Norm(self, k, f, kappa=None, simplex_flag=False):
absolute_val = abs(self)
#next 2 lines actually compute the SufOR for little indian encoding
bits = absolute_val.bit_decompose(k)[::-1]
suffixes = floatingpoint.PreOR(bits)[::-1]
z = [0] * k
for i in range(k - 1):
z[i] = suffixes[i] - suffixes[i+1]
z[k - 1] = suffixes[k-1]
z.reverse()
t2k = self.get_type(2 * k)
acc = t2k.bit_compose(z)
sign = self.bit_decompose()[-1]
signed_acc = util.if_else(sign, -acc, acc)
absolute_val_2k = t2k.bit_compose(absolute_val.bit_decompose())
part_reciprocal = absolute_val_2k * acc
return part_reciprocal, signed_acc
def pow2(self, k):
l = int(math.ceil(math.log(k, 2)))
bits = [self.equal(i, l) for i in range(k)]
return self.get_type(k).bit_compose(bits)
[docs]class sbitint(_bitint, _number, sbits, _sbitintbase):
""" Secret signed integer in one binary register. Use :py:obj:`get_type()`
to specify the bit length::
si32 = sbitint.get_type(32)
print_ln('add: %s', (si32(5) + si32(3)).reveal())
print_ln('sub: %s', (si32(5) - si32(3)).reveal())
print_ln('mul: %s', (si32(5) * si32(3)).reveal())
print_ln('lt: %s', (si32(5) < si32(3)).reveal())
This should output::
add: 8
sub: 2
mul: 15
lt: 0
This class is retained for compatibility, but development now
focuses on :py:class:`sbitintvec`.
"""
n_bits = None
bin_type = None
types = {}
vector_mul = True
[docs] @classmethod
def get_type(cls, n, other=None):
""" Returns a signed integer type with fixed length.
:param n: length """
if isinstance(other, sbitvec):
return sbitvec
if n in cls.types:
return cls.types[n]
sbits_type = sbits.get_type(n)
class _(sbitint, sbits_type):
# n_bits is used by _bitint
n_bits = n
bin_type = sbits_type
_.__name__ = 'sbitint' + str(n)
cls.types[n] = _
return _
@classmethod
def combo_type(cls, other):
if isinstance(other, sbitintvec):
return sbitintvec
else:
return cls
@classmethod
def new(cls, value=None, n=None):
return cls.get_type(n)(value)
def set_length(*args):
pass
@classmethod
def bit_compose(cls, bits):
# truncate and extend bits
bits = list(bits)[:cls.n]
bits += [0] * (cls.n - len(bits))
return super(sbitint, cls).bit_compose(bits)
def force_bit_decompose(self, n_bits=None):
return sbits.bit_decompose(self, n_bits)
def TruncMul(self, other, k, m, kappa=None, nearest=False):
if nearest:
raise CompilerError('round to nearest not implemented')
self_bits = self.bit_decompose()
other_bits = other.bit_decompose()
if len(self_bits) + len(other_bits) > k:
raise Exception('invalid parameters for TruncMul: '
'self:%d, other:%d, k:%d' %
(len(self_bits), len(other_bits), k))
t = self.get_type(k)
a = t.bit_compose(self_bits + [self_bits[-1]] * (k - len(self_bits)))
t = other.get_type(k)
b = t.bit_compose(other_bits + [other_bits[-1]] * (k - len(other_bits)))
product = a * b
res_bits = product.bit_decompose()[m:k]
res_bits += [res_bits[-1]] * (self.n - len(res_bits))
t = self.combo_type(other).get_type(k - m)
return t.bit_compose(res_bits)
def __mul__(self, other):
if isinstance(other, sbitintvec):
return other * self
else:
return super(sbitint, self).__mul__(other)
@classmethod
def get_bit_matrix(cls, self_bits, other):
n = len(self_bits)
assert n == other.n
res = []
for i, bit in enumerate(self_bits):
if util.is_zero(bit):
res.append([0] * (n - i))
else:
if cls.vector_mul:
x = sbits.get_type(n - i)()
inst.andrs(n - i, x, other, bit)
res.append(x.bit_decompose(n - i))
else:
res.append([(x & bit) for x in other.bit_decompose(n - i)])
return res
@classmethod
def popcnt_bits(cls, bits):
res = sbitintvec.popcnt_bits(bits).elements()[0]
res = cls.conv(res)
return res
[docs] def pow2(self, k):
""" Computer integer power of two.
:param k: bit length of input """
return _sbitintbase.pow2(self, k)
[docs]class sbitintvec(sbitvec, _bitint, _number, _sbitintbase):
"""
Vector of signed integers for parallel binary computation.
The following example uses vectors of size two::
sb32 = sbits.get_type(32)
siv32 = sbitintvec.get_type(32)
a = siv32([sb32(3), sb32(5)])
b = siv32([sb32(4), sb32(6)])
c = (a + b).elements()
print_ln('add: %s, %s', c[0].reveal(), c[1].reveal())
c = (a * b).elements()
print_ln('mul: %s, %s', c[0].reveal(), c[1].reveal())
c = (a - b).elements()
print_ln('sub: %s, %s', c[0].reveal(), c[1].reveal())
c = (a < b).elements()
print_ln('lt: %s, %s', c[0].reveal(), c[1].reveal())
This should output::
add: 7, 11
mul: 12, 30
sub: -1, 11
lt: 1, 1
"""
bit_extend = staticmethod(_complement_two_extend)
mul_functions = {}
@classmethod
def popcnt_bits(cls, bits):
return sbitvec.from_vec(bits).popcnt()
def elements(self):
return [sbitint.get_type(len(self.v))(x)
for x in sbitvec.elements(self)]
def __add__(self, other):
if util.is_zero(other):
return self
try:
a, b = self.expand(other)
except:
return NotImplemented
v = sbitint.bit_adder(a, b)
return self.get_type(len(v)).from_vec(v)
__radd__ = __add__
__sub__ = _bitint.__sub__
def __rsub__(self, other):
try:
a, b = self.expand(other)
except:
return NotImplemented
return self.from_vec(b) - self.from_vec(a)
def __mul__(self, other):
if isinstance(other, sbits):
return self.from_vec(other * x for x in self.v)
elif len(self.v) == 1:
return other * self.v[0]
elif isinstance(other, sbitfixvec):
return NotImplemented
try:
my_bits, other_bits = self.expand(other, False)
except:
return NotImplemented
m = float('inf')
uniform = True
for x in itertools.chain(my_bits, other_bits):
try:
uniform &= type(x) == type(my_bits[0]) and x.n == my_bits[0].n
m = min(m, x.n)
except:
pass
if uniform and Program.prog.options.cisc:
bl = len(my_bits)
key = bl, len(other_bits)
if key not in self.mul_functions:
def instruction(*args):
res = self.binary_mul(args[bl:2 * bl], args[2 * bl:],
args[0].n)
for x, y in zip(res, args):
x.mov(y, x)
instruction.__name__ = 'binary_mul%sx%s' % (bl, len(other_bits))
self.mul_functions[key] = instructions_base.cisc(instruction,
bl)
res = [sbits.get_type(m)() for i in range(bl)]
self.mul_functions[key](*(res + my_bits + other_bits))
return self.from_vec(res)
else:
return self.binary_mul(my_bits, other_bits, m)
@classmethod
def binary_mul(cls, my_bits, other_bits, m):
matrix = []
for i, b in enumerate(other_bits):
if m == 1:
matrix.append([x * b for x in my_bits[:len(my_bits)-i]])
else:
matrix.append((
sbitvec.from_vec(my_bits[:len(my_bits)-i]) * b).v)
v = sbitint.wallace_tree_from_matrix(matrix)
return cls.from_vec(v[:len(my_bits)])
__rmul__ = __mul__
reduce_after_mul = lambda x: x
def TruncMul(self, other, k, m, kappa=None, nearest=False):
if nearest:
raise CompilerError('round to nearest not implemented')
if not isinstance(other, sbitintvec):
other = sbitintvec(other)
a = self.get_type(k).from_vec(_complement_two_extend(self.v, k))
b = self.get_type(k).from_vec(_complement_two_extend(other.v, k))
tmp = a * b
assert len(tmp.v) == k
return self.get_type(k - m).from_vec(tmp[m:])
[docs] def pow2(self, k):
""" Computer integer power of two.
:param k: bit length of input """
return _sbitintbase.pow2(self, k)
@staticmethod
def reverse_type(other):
return isinstance(other, sbitfixvec)
sbits.vec = sbitvec
sbitint.vec = sbitintvec
class cbitfix(object):
malloc = staticmethod(lambda *args: cbits.malloc(*args))
n_elements = staticmethod(lambda: 1)
conv = staticmethod(lambda x: x)
load_mem = classmethod(lambda cls, *args: cls._new(cbits.load_mem(*args)))
store_in_mem = lambda self, *args: self.v.store_in_mem(*args)
mem_size = staticmethod(lambda *args: 1)
size = 1
@classmethod
def _new(cls, value):
if isinstance(value, list):
return [cls._new(x) for x in value]
res = cls()
if cls.k < value.unit:
bits = value.bit_decompose(cls.k)
sign = bits[-1]
value += (sign << (cls.k)) * -1
res.v = value
return res
def output(self):
v = self.v
inst.print_float_plainb(v, cbits.get_type(32)(-self.f), cbits(0),
cbits(0), cbits(0))
[docs]class sbitfix(_fix, _binary):
""" Secret signed fixed-point number in one binary register.
Use :py:obj:`set_precision()` to change the precision.
This class is retained for compatibility, but development now
focuses on :py:class:`sbitfixvec`.
Example::
print_ln('add: %s', (sbitfix(0.5) + sbitfix(0.3)).reveal())
print_ln('mul: %s', (sbitfix(0.5) * sbitfix(0.3)).reveal())
print_ln('sub: %s', (sbitfix(0.5) - sbitfix(0.3)).reveal())
print_ln('lt: %s', (sbitfix(0.5) < sbitfix(0.3)).reveal())
will output roughly::
add: 0.800003
mul: 0.149994
sub: 0.199997
lt: 0
Note that the default precision (16 bits after the dot, 31 bits in
total) only allows numbers up to :math:`2^{31-16-1} \\approx
16000`. You can increase this using :py:func:`set_precision`.
"""
float_type = type(None)
clear_type = cbitfix
[docs] @classmethod
def set_precision(cls, f, k=None):
super(sbitfix, cls).set_precision(f, k)
cls.int_type = sbitint.get_type(cls.k)
@classmethod
def load_mem(cls, address, size=None):
if size not in (None, 1):
v = [cls.int_type.load_mem(address + i) for i in range(size)]
return sbitfixvec._new(sbitintvec(v))
else:
return super(sbitfix, cls).load_mem(address)
def __xor__(self, other):
return type(self)._new(self.v ^ other.v)
def __mul__(self, other):
if isinstance(other, sbit):
return type(self)._new(self.int_type(other * self.v))
elif isinstance(other, sbitfixvec):
return other * self
else:
return super(sbitfix, self).__mul__(other)
__rxor__ = __xor__
__rmul__ = __mul__
@staticmethod
def multipliable(other, k, f, size):
class cls(_fix):
int_type = sbitint.get_type(k)
clear_type = cbitfix
cls.set_precision(f, k)
return cls._new(cls.int_type(other), k, f)
[docs]class sbitfixvec(_fix, _vec, _binary):
""" Vector of fixed-point numbers for parallel binary computation.
Use :py:obj:`set_precision()` to change the precision.
Example::
a = sbitfixvec([sbitfix(0.3), sbitfix(0.5)])
b = sbitfixvec([sbitfix(0.4), sbitfix(0.6)])
c = (a + b).elements()
print_ln('add: %s, %s', c[0].reveal(), c[1].reveal())
c = (a * b).elements()
print_ln('mul: %s, %s', c[0].reveal(), c[1].reveal())
c = (a - b).elements()
print_ln('sub: %s, %s', c[0].reveal(), c[1].reveal())
c = (a < b).elements()
print_ln('lt: %s, %s', c[0].reveal(), c[1].reveal())
This should output roughly::
add: 0.699997, 1.10001
mul: 0.119995, 0.300003
sub: -0.0999908, -0.100021
lt: 1, 1
"""
int_type = sbitintvec.get_type(sbitfix.k)
float_type = type(None)
clear_type = cbitfix
@property
def bit_type(self):
return type(self.v[0])
[docs] @classmethod
def set_precision(cls, f, k=None):
super(sbitfixvec, cls).set_precision(f=f, k=k)
cls.int_type = sbitintvec.get_type(cls.k)
def __init__(self, value=None, *args, **kwargs):
if isinstance(value, (list, tuple)):
self.v = self.int_type.from_vec(sbitvec([x.v for x in value]))
else:
if isinstance(value, sbitvec):
value = self.int_type(value)
super(sbitfixvec, self).__init__(value, *args, **kwargs)
def elements(self):
return [sbitfix._new(x, f=self.f, k=self.k) for x in self.v.elements()]
def mul(self, other):
if isinstance(other, sbits):
return self._new(self.v * other)
else:
return super(sbitfixvec, self).mul(other)
def __xor__(self, other):
if util.is_zero(other):
return self
return self._new(self.v ^ other.v)
def __and__(self, other):
return self._new(self.v & other.v)
__rxor__ = __xor__
@staticmethod
def multipliable(other, k, f, size):
class cls(_fix):
int_type = sbitint.get_type(k)
clear_type = cbitfix
cls.set_precision(f, k)
return cls._new(cls.int_type(other), k, f)
sbitfix.set_precision(16, 31)
sbitfixvec.set_precision(16, 31)
sbitfix.vec = sbitfixvec
class cbitfloat:
def __init__(self, v, p, z, s, nan=0):
self.v, self.p, self.z, self.s, self.nan = v, p, z, s, cbit.conv(nan)
def output(self):
inst.print_float_plainb(self.v, self.p, self.z, self.s, self.nan)